Climate change, phenology and the nature of consumer–resource interactions: advancing the match/mismatch hypothesis
نویسندگان
چکیده
Introduction Understanding how species cope with ecological and environmental variation is a fundamental concern of ecology. Over the course of their lives, many organisms alter their phenotypes in response to biotic and abiotic pressures (Miner et al. 2005), responses that cascade through the food web to, in turn, affect the dynamics of species interactions. These effects, called trait-mediated effects, are pervasive in ecological communities, and their study has offered new insights into community ecology, a subject previously dominated by a density-mediated understanding of species interactions (Werner and Peacor 2003). Most analyses of trait-mediated effects take a top-down perspective where variation in consumer traits causes phenotypic responses by prey species. These phenotypic responses include behavioural, morphological and/or physiological plasticity that have ramifying consequences for the food web by influencing how predators and prey interact (Werner and Peacor 2003). This top-down perspective on the influence of traits in communities suggests that it is consumers that determine the nature and strength of the mediated effects. Climate change is anongoing global perturbation that also affects thedensities and traits of interacting species, although these effects are not necessarily related to food web trade-offs. Cohesive shifts in phenology – the timing of periodic biological events, such asmigration, flowering ormating – reveal the global scale of climate change’s influence on species’ traits (Parmesan and Yohe 2003; Root et al. 2003). These phenological changes affect conditions that influence
منابع مشابه
Climate and the match or mismatch between predator requirements and resource availability
Climate influences a population through a variety of processes, including reproduction, growth, migration patterns and phenology. Climate may operate either directly through metabolic and reproductive processes or indirectly through prey, predators, and competitors. One mechanism that may be particularly important, and which is the focus of this review, is the role of climate in affecting the r...
متن کاملWhy climate change will invariably alter selection pressures on phenology.
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phe...
متن کاملMismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer
Marked impacts of climate change on biodiversity have frequently been demonstrated, including temperature-related shifts in phenology and life-history traits. One potential major impact of climate change is the modification of synchronization between the phenology of different trophic levels. High phenotypic plasticity in laying date has allowed many bird species to track the increasingly early...
متن کاملPlant – pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations?
Climate change can aff ect plant – pollinator interactions in a variety of ways, but much of the research attention has focused on whether independent shifts in phenology will alter temporal overlap between plants and pollinators. Here I review the research on plant – pollinator mismatch, assessing the potential for observational and experimental approaches to address particular aspects of the ...
متن کاملDifferent Ultimate Factors Define Timing of Breeding in Two Related Species
Correct reproductive timing is crucial for fitness. Breeding phenology even in similar species can differ due to different selective pressures on the timing of reproduction. These selection pressures define species' responses to warming springs. The temporal match-mismatch hypothesis suggests that timing of breeding in animals is selected to match with food availability (synchrony). Alternative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012